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Scattering from small colloidal particles
in a semidilute polymer solution
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Abstract. The correlations between the segments of a semidilute polymer solution are found to induce
correlations in the positions of small particles added to the solution. Small means a diameter much less than
the polymer’s correlation length. In the presence of polymer the particles behave as if they attracted each
other. It is shown how the polymer’s correlation length may be determined from a scattering experiment
performed on the spheres.

PACS. 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling – 83.70.Hq Heteroge-
neous liquids: suspensions, dispersions, emulsions, pastes, slurries, foams, block copolymers, etc.

1 Introduction

Small colloidal particles in a semidilute polymer solution
are shown to interact via a long ranged, attractive poten-
tial of mean force. This potential of mean force [1] is an
effective interaction potential between the particles due
to the presence of the polymer. The particles are small
with respect to the polymer’s correlation length and, as
it is this length which determines the range of the attrac-
tive potential of mean force, the attractive interactions
are long ranged with respect to the direct interaction be-
tween the spheres. The effective attractions between the
colloidal particles are a result of the correlations between
the segments in a semidilute polymer solution [2]. The
segments of a polymer molecule in a good solvent follow a
self-avoiding walk. Because of this the fraction of the vol-
ume of the solution occupied by the polymer segments is
highly non-random: if there is a segment at one point then
the average density of polymer nearby is much higher than
the average density of segments. This implies that the vol-
ume not occupied by the polymer segments is also highly
correlated; if you imagine a picture in which every point is
either black or white, then if there is a pattern to the white
areas then there must be a pattern to the black areas. But
the particles are only free to move in this volume which is
free of polymer; they are excluded from the volume occu-
pied by the polymer. So the particles move in a fraction
of the solution’s volume which has long range correlations
and so their positions have long range correlations. In fact
the correlations between the spheres resemble those pro-
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duced by a long ranged attraction. As the correlations in
the spheres reflect those in the polymer, scattering exper-
iments [3] on the colloidal particles may be used to probe
the structure of a semidilute polymer solution; in particu-
lar they provide a way of measuring the correlation length
of the polymer.

The colloidal particles could be protein molecules
[4,5], surfactant micelles [6,7], or synthetic, polymer or
silica, spheres [8,9]. Both protein molecules and micelles
typically have diameters of a few nm. The direct inter-
action between particles is taken to be purely repulsive,
there are no attractive interactions. The polymer is con-
sidered to be in a good solvent and is therefore swollen due
to self-interactions [2]. The polymer’s radius of gyration is
much larger than the diameter of the particles, ∼ 10 nm
or more. See references [10–12] for examples of work where
the radius of gyration is comparable to or smaller than the
diameter of the particles. Recent work of Khalatur et al.
[13] has dealt with similar mixtures to those considered
here using RISM integral equations. It is more numerical
and less intuitive than here. The RISM approach is also
best suited to higher polymer densities than those con-
sidered here, say volume fractions of polymer of 10% and
more. Our simple scaling approach breaks down at these
densities. All interactions are assumed to be excluded vol-
ume interactions, that is two polymer segments may not
occupy the same volume and likewise for two particles or
a particle and a polymer segment. This is reasonable if the
solvent is good for the polymer, and the polymer does not
absorb onto the particle.

All three interactions are excluded volume and there-
fore there are no energy scales, apart from the temperature
T . Therefore, the behaviour is a function only of the length
scales of the mixture. The length scale of the particles is
just their diameter D. A pure semidilute polymer solution
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Fig. 1. A schematic picture of a small colloidal sphere, a mi-
celle or a protein molecule, and a nearby part of a polymer
chain. The black circle is a spherical particle. The chain is
shown as a black curve and the dashed circles represent the
rescaled segments of size D.

has only one relevant length scale, the correlation length
ξ [2], which is roughly the distance between interactions
between segments on different polymer chains. The radius
of gyration is not a relevant length scale as it is much
larger than ξ and the chain loses its correlations and ‘for-
gets’ which polymer it belongs to over a distance of ξ. The
mixture then has only two relevant length scales: D and ξ
[14–16]. This means that the particle–polymer interaction
depends only on their ratio: D/ξ.

2 Theory

The polymer molecules consist of flexible linear chains of
segments of size a. These segments are much smaller than
the spherical particles, D � a and so the volumes which
the segments exclude to the spheres overlap. Each seg-
ment excludes a sphere from a volume ∼ (D+a)3 centred
on itself but as the segments are part of a chain there are
always two segments a away from any segments, another
two ∼ 2a away, etc. This problem of the excluded vol-
umes overlapping can be reduced if the polymer segment
length is rescaled from a to D. This is illustrated in Fig-
ure 1, which shows a sphere and a part of a polymer chain.
As semidilute polymer solutions are scale invariant [2] at
length scales much less than the correlation length ξ we
are free to perform this rescaling. Now that the polymer
segment length is D the excluded volumes of adjacent seg-
ments overlap much less strongly, although they still over-
lap. Each rescaled segment consists of many segments, for
D� a, and so acts like a polymer coil of the same size as
the particles. The particles cannot penetrate coils of their
own size [17] and so the segments exclude particles from
a volume ∼ D3. The ratio of the number of segments of
size D to those of size a is ∼ (a/D)5/3 if the polymer is in
a good solvent.

From now on we only consider the scaled polymer seg-
ments of size D, see Figure 1. Treating the polymer as a

sequence of rescaled segments of size D makes it clear that
the only relevant length scales are D and the polymer’s
correlation length. So, the polymer density cP is the den-
sity of these polymer segments. These segments exclude
each other from a volume ∼ D3 just as dilute polymer
coils exclude each other from a volume of order of their
radius of gyration cubed. We have approximated the inter-
action between a segment and a sphere by a hard-sphere
interaction of diameter D; the same interaction as between
the spheres. This is an approximation of course; the seg-
ments do not interact with a completely hard potential,
they are only very approximately spherical and they are
connected into chains.

2.1 Scaling theory for semidilute polymers

First, we briefly summarize the scaling theory for poly-
mer solutions in good solvents, it is described in detail
by de Gennes [2]. Our spheres will be added to a semidi-
lute solution of polymer molecules in a good solvent. As
noted above we have rescaled the polymer segment length
from a to D. The size of an single isolated polymer coil
of nD segments is measured by its radius of gyration RG

which is given by RG ∼ Dn
3/5
D , in a good solvent [2]. The

correlations (fluctuations) in an isolated polymer coil ex-
tend across the entire coil; the correlation length ξ is thus
∼ RG. When polymer coils overlap, interactions between
different chains reduce the correlation length ξ. The over-

lap volume fraction c∗ is c∗P = D−3n
−4/5
D . This volume

fraction is the boundary between the dilute and semidi-
lute regimes; below c∗ the interactions between chains can
be treated as a perturbation but above c∗P the interaction
between a pair of chains is � kBT . In the dilute regime

ξ = RG, and in the semidilute regime. ξ = D−5/4c
−3/4
P .

We require the pair distribution function for the poly-
mer segments gP(r), where r is the magnitude of the sep-
aration of the two segments [18]. It is

gP(r) ∼


0 r . D(
ξ

r

)4/3

D . r . ξ

1 +
ξ exp(−r/ξ)

r
ξ . r.

(1)

Note that we define our pair distribution function differ-
ently from reference [2]. The first line of equation (1) just
reflects the mutual impenetrability of polymer segments,
the second is the density of a self-avoiding random walk,
and the third line reflects the screening of correlations at
distances greater than ξ. Note that for r � ξ the domi-
nant contribution to gP is the contribution from a single
chain.

2.2 Scaling theory for spheres in a semidilute polymer
solution

In order to examine the pair correlations and hence the
scattering from spheres in a semidilute solution we require
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the pair distribution function of the spheres, gS(r). For
r < D this is 0 due to the hard-sphere interaction but
for r > D, gS is not equal to 1 due to the fact that the
cavities in the polymer solution are correlated; see [19].
The cavities are the points in the polymer solution where
there is no polymer within a distance D, and so where it
is possible to insert a sphere [19]. In the limit of very low
sphere density cS we need only consider the two spheres
which form the pair; there are no other spheres present in
this limit and so the correlations between the spheres are
entirely due to correlations in the cavities:

lim
cS→0

gS(r) =

{
0 r < D
yP(r) r > D.

(2)

where yP(r) is the cavity–cavity correlation function [18],
equal to the probability of inserting a pair of spheres a
distance r apart divided by the square of the probability of
inserting one sphere. The probability of inserting a single
sphere will be denoted by α. Below we start by estimating
α and then go on to consider the probability of being able
to insert a pair of spheres which yields an estimate of yP.

The concentration of segments is cP and each segment
excludes spheres from a volume of ∼ D3. If we ignore the
fact the segments are connected then as the polymer den-
sity is low, we can also neglect the overlaps of excluded
volumes of nonadjacent segments and we arrive at the
conclusion that the fraction of the volume denied to the
spheres is cPD

3 [14,15]. Using ξ = D−5/4c
−3/4
P this frac-

tion can also be written as (D/ξ)4/3, and the fraction of
the volume available to the spheres, α, is

α ∼ 1−

(
D

ξ

)4/3

. (3)

Equation (3) has a probabilistic interpretation which will
be used below. It is the probability that there is no poly-
mer segment within D of a randomly chosen point in the
solution.

In order to calculate the pair distribution function be-
tween spheres, gS, we relate it, using equation (2), to the
distribution function between pairs of cavities yP, i.e.,
pairs of points with no polymer segments within a dis-
tance D of either of them. Then we express yP in terms of
α and gP, both of which are known, equations (3, 1). In
order to relate yP to gP we use the fact that for a pair of
points, labeled 1 and 2, there are 4 possibilities: 1 and 2
both have polymer segments within a distance D; 1 does
but 2 does not; 2 does but 1 does not; and neither does.
Therefore, the probability of the fourth possibility occur-
ring, which is α2yP, is equal to 1 minus the sum of the
probabilities of the other possibilities. The probability of
both points being within D of a polymer segment is the
square of the probability of one point having a nearby
segment, (D/ξ)8/3, times gP(r), where r is the magnitude
of the separation r between points 1 and 2. In deriving
this result we have integrated over spheres of diameter D
around both points; therefore, it is only valid for r > 2D
but we will use it for r > D. This is a very minor approxi-
mation, yP still has the correct behaviour near r = D. The

e−r /ξ

r −4/3

0
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ξ
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Fig. 2. The polymer density around a sphere/cavity in the
polymer solution. If there is a sphere at the origin then there
can be no polymer segment there and so the polymer density
is reduced in the surrounding volume. The x-axis of the graph
is r the distance from the sphere and the y-axis is the polymer
density. The segment density in contact with the sphere is less
than cP but non-zero; it relaxes to the bulk value cP at a rate
∼ r−4/3 for r < ξ and exponentially when r > ξ.

probability of point 1 being near a segment and point 2
not being near a segment, is the probability of point 1
being near a segment, (D/ξ)4/3, times the probability of
there being no polymer segment near a point r away from
a segment 1 − (D/ξ)4/3gP(r). This second probability is
just 1 minus the probability of there being a segment at a
separation r from another segment. So,(

1− (D/ξ)4/3
)2

yP(r) ∼ 1−(D/ξ)8/3gP(r) − 2(D/ξ)4/3

×
(

1−(D/ξ)4/3gP(r)
)

r > D, (4)

and

yP(r) ∼ 1 +
(D/ξ)8/3(

1− (D/ξ)4/3
)2 (gP(r) − 1) r > D. (5)

Note that α2yP(D) ∼ α which is at it should be, the
probability of inserting two particles next to each other is
almost the same as the probability of being able to insert
one particle. The probability of inserting a sphere close to
where a sphere has already been successfully inserted is
higher than at a randomly chosen point in the polymer
solution. This is because the density of segments near a
point which is free of polymer is lower than in the bulk.
The fractional reduction in density near a sphere/cavity
is given by the term in parentheses on the right of equa-
tion (4) [20]. It is illustrated in Figure 2. The methodology
of the derivation of equation (5) is quite general, it may
also be used to derive yP for ideal chains and for other
dimensionalities.

The positions of the spheres in the polymer solution
are correlated over a range ξ; they are distributed as if
there is an attractive part to their interaction. The
effective attraction is expressed as an effective potential
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between two spheres, called the potential of mean force
w(r) [1]. This is defined by

w(r) = −T ln gS(r) (6)

which is, using equation (5),

w(r) ∼


∞ r < D

−T ln

[
1+

(D/ξ)8/3(
1−(D/ξ)4/3

)2 (gP(r)−1)

]
r > D.

(7)

As D/ξ � 1, we may linearize the logarithm

w(r) ∼ −T
(D/ξ)8/3(

1− (D/ξ)4/3
)2 (gP(r) − 1) r > D. (8)

Then from equations (1, 8) we see that the depth of the
well in the potential of mean force is T (D/ξ)4/3 � T .
The potential is weak but long ranged, and as the range
is increased the depth of the well decreases.

Now that the distribution function between spheres
has been obtained we can calculate the structure factor
S(q), where q is the wavevector. S(q) could be measured
in a scattering experiment performed on the mixture; note
that it is not the total structure factor for the mixture, just
the partial structure factor of the spheres. If we define the
total correlation function for the spheres hS(r) = gS(r)−1
[18], then

S(q) = 1 + cShS(q). (9)

The Fourier transform of the total correlation function,
hS(q), is

hS(q) =

∫
hS(r)eiq·rdr, (10)

where hP is the polymer segment–segment total correla-
tion function. Using equations (2, 5), equation (10)
becomes

hS(q) =−

∫ D

0

eiq·rdr +
(D/ξ)8/3(

1− (D/ξ)4/3
)2∫ ∞

D

hP(r)eiq·rdr,

(11)

where hP(r) = gP(r)−1. The first integral of equation (11)
is just the lowest order, in density, approximation to the
Fourier transform of the total correlation function between
hard spheres [18]. The second term of equation (11) is
not the Fourier transform of hP(r) because the region of
integration is restricted to r > D. However, this region
only contributes a fraction (D/ξ)5/3 to the integrand, for
q � D−1, and so we approximate the integral of the sec-
ond term of equation (11) by hP(q). Then, equation (11)
becomes

hS(q) ∼ −4πD3

(
j1(qD)

qD

)
+

(D/ξ)8/3(
1− (D/ξ)4/3

)2hP(q),

(12)
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Fig. 3. The total correlation function for low-density hard
spheres. The solid curve is for pure hard spheres and the
dashed curve is for spheres in a semidilute polymer solution
with ξ/D = 10. The inset shows the small q part at a larger
scale.

where j1 is the first spherical Bessel function, j1(z) =
sin(z)/z2−cos(z)/z. We have related hS(q) and hence S(q)
to the polymer segment–segment correlation function hP

and so hP, and therefore ξ, can be measured using only
scattering from the spheres.

For hP(q) we use the Ornstein-Zernike form, valid for
small q, q � ξ−1,

hP(q) ∼
ξ3

(qξ)2 + 1
, (13)

which is the Fourier transform of the third line of equa-
tion (1). Although this gives the correct behaviour at small
q, at q � ξ, hP varies as q−5/3 not the q−2 given by equa-
tion (13): 5/3 is the exponent for a self-avoiding walk and
at length scales smaller than ξ the segment–segment inter-
actions are not screened and the chains are self-avoiding
[2]. We take equation (13) as unless the difference between
ξ and D is very large, say O(100) which requires a very
large polymer, then the behaviour at small enough values
of q to distinguish between 5/3 and 2 will be obscured
by first term in equation (12) and so not observable in
measurements of S(q). Then,

hS(q)∼−4πD3

(
j1(qD)

qD

)
+

D8/3ξ1/3

(1− (D/ξ)4/3)2

(
1

(qξ)2 + 1

)
.

(14)

In Figure 3 we have plotted hS(q) both with and without
a semidilute polymer solution. The hS(q) is just what we
would expect for particles interacting via a short ranged
repulsion — the hard sphere interaction — and a long
ranged attraction — the attractive potential of mean force
due to the polymer. Figure 3 may be compared with the
Figure 5 of Khalatur et al. [13] who observe the same
effect. Note that at large values of q the polymer has no
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effect, hS is dominated at large q by the hard-sphere inter-
actions. While at low q hS is less negative when polymer
is present. We can compare this with a van der Waals
fluid in which the attractive interaction is infinitely long
ranged; in that case hS(q) = hHS(q), for hHS the hard-
sphere total correlation function, except for q = 0 where
hS > hHS by an amount proportional to the extent of the
attraction [18]. Due to the long range of the attraction,
ξ, as compared to the repulsion, D, the spheres behave
very much like a van der Waals fluid. Indeed, they are an
even better approximation to a van der Waals fluid than
are simple fluids such as the noble gases. The ratio of the
range of the attractive interaction to that of the repulsive
interaction is smaller for noble gases than for the spheres
in the polymer solution. However, this is only true at low
densities of spheres. When the density of spheres becomes
comparable to the density of polymer (rescaled) polymer
segments the correlations between polymer segments will
be affected by the spheres and ξ reduced. The distribu-
tion of spheres in the mixture is much more uniform than
that of the polymer, although as we have shown there are
significant correlations in the positions of the sphere. So,
we estimate that even if the density of spheres is com-
parable to that of the polymer segments the spheres will
not greatly affect the correlations. The situation where the
density of spheres is high is quite subtle and so far beyond
this work.

The interactions studied here between spheres in a
polymer solution are similar to those between spheres in
a near-critical binary mixture [21]. There too the spheres
behave as if they attracted each other, due to correla-
tions (inhomogeneities) in the solvent in which they are
suspended. Both these interactions are analogous to the
quantum-mechanical Casimir interaction [21].

3 Conclusion

The pair distribution function of small hard spheres in a
semidilute polymer has been obtained, equation (14), and
it has been shown how to determine the polymer’s corre-
lation length from the structure factor of the spheres. The
correlations in the distribution function are long ranged,
i.e., the ratio of the range of the polymer induced effective
attraction, ξ, to the range of the repulsion, D, is much
larger than the ratio of the attractive to the repulsive
forces in simple fluids such as the noble gases. Note that
this effective attraction is in a mixture where all interac-
tions are purely repulsive excluded volume interactions.
As the range of the attraction is just ξ, it is a function of
the polymer concentration and can be varied at will within
the semidilute regime. Also the depth of the attractive well
between two spheres varies with ξ; as the range increases
the well depth decreases. Finally, we note that as only the
ratio in size between the particle and the polymer’s corre-
lation length is important, the behaviour described above
would also occur if the polymer is not a flexible polymer
but a semiflexible biopolymer such as DNA or wormlike

micelles [22,23] and the particles are much larger particles
with diameters of a few hundred nm.
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